我們Radiatoripermotori的IT認證考題擁有多年的培訓經驗,Radiatoripermotori Google的Professional-Data-Engineer考古題考試培訓資料是個值得信賴的產品,我們的IT精英團隊不斷為廣大考生提供最新版的Professional-Data-Engineer考古題考試培訓資料,我們的工作人員作出了巨大努力,以確保你們在考試中總是取得好成績,可以肯定的是,Radiatoripermotori Google的Professional-Data-Engineer考古題考試材料是為你提供最實際的IT認證材料。 作為IT相關認證考試大綱的主要供應商,Radiatoripermotori的IT專家一直不斷地提供品質較高的產品,不斷為客戶提供免費線上客戶服務,並以最快的速度更新考試大綱。 通過Google的Professional-Data-Engineer考古題考試認證是從事IT行業的人的夢想,如果你想要變夢想為現實,你只需要選擇專業的培訓,Radiatoripermotori就是一個專業的提供IT認證培訓資料的網站之一,選擇Radiatoripermotori,它將與你同在,確保你成功,無論追求的是否有所增加,我們Radiatoripermotori回讓你的夢想變成現實。
因為我們Radiatoripermotori提供給你配置最優質的類比Google的Professional-Data-Engineer - Google Certified Professional Data Engineer Exam考古題的考試考古題,將你一步一步帶入考試準備之中,我們Radiatoripermotori提供我們的保證,我們Radiatoripermotori Google的Professional-Data-Engineer - Google Certified Professional Data Engineer Exam考古題的考試試題及答案保證你成功。 Radiatoripermotori的Professional-Data-Engineer 考試資訊考古題是經過眾多考生檢驗過的資料,可以保證有很高的成功率。如果你用過考古題以後仍然沒有通過考試,Radiatoripermotori會全額退款。
來吧,讓暴風雨來得更猛烈些吧!那些想通過IT認證的考生面臨那些考前準備將束手無策,但是又不得不準備,從而形成了那種急躁不安的心理狀態。不過,自從有了Radiatoripermotori Google的Professional-Data-Engineer考古題考試認證培訓資料,那種心態將消失的無蹤無影,因為有了Radiatoripermotori Google的Professional-Data-Engineer考古題考試認證培訓資料,他們可以信心百倍,不用擔心任何考不過的風險,當然也可以輕鬆自如的面對考試了,這不僅是心理上的幫助,更重要的是通過考試獲得認證,幫助他們拼一個美好的明天。
獲得Professional-Data-Engineer考古題認證已經成為大多數IT員工獲得更好工作的一種選擇,然而,許多考生一直在努力嘗試卻失敗了。如果你選擇使用我們的Google Professional-Data-Engineer考古題題庫產品,幫您最大程度保證取得成功。充分利用Professional-Data-Engineer考古題題庫你將得到不一樣的效果,這是一個針對性強,覆蓋面廣,更新快,最完整的學習資料,保證您一次通過Professional-Data-Engineer考古題考試。如果您想要真實的考試模擬,就選擇我們軟件版本的Google Professional-Data-Engineer考古題題庫,安裝在電腦上進行模擬,簡單易操作。
購買我們Radiatoripermotori Google的Professional-Data-Engineer考古題考試認證的練習題及答案,你將完成你人生中最重要的考前準備問題,你將得到最高品質的培訓資料,今天購買我們的產品,是你為自己打開了新的大門,也是為了更美好的未來,也使你付出最小努力,獲得最大的成功。
QUESTION NO: 1
You have an Apache Kafka Cluster on-prem with topics containing web application logs. You need to replicate the data to Google Cloud for analysis in BigQuery and Cloud Storage. The preferred replication method is mirroring to avoid deployment of Kafka Connect plugins.
What should you do?
A. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a Sink connector. Use a Dataflow job to read fron PubSub and write to GCS.
B. Deploy a Kafka cluster on GCE VM Instances. Configure your on-prem cluster to mirror your topics to the cluster running in GCE. Use a Dataproc cluster or Dataflow job to read from Kafka and write to
GCS.
C. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a
Source connector. Use a Dataflow job to read fron PubSub and write to GCS.
D. Deploy a Kafka cluster on GCE VM Instances with the PubSub Kafka connector configured as a Sink connector. Use a Dataproc cluster or Dataflow job to read from Kafka and write to GCS.
Answer: B
QUESTION NO: 2
Which Google Cloud Platform service is an alternative to Hadoop with Hive?
A. Cloud Datastore
B. Cloud Bigtable
C. BigQuery
D. Cloud Dataflow
Answer: C
Explanation
Apache Hive is a data warehouse software project built on top of Apache Hadoop for providing data summarization, query, and analysis.
Google BigQuery is an enterprise data warehouse.
Reference: https://en.wikipedia.org/wiki/Apache_Hive
QUESTION NO: 3
For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?
A. Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.
B. Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.
C. Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.
D. Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.
Answer: D
Explanation
It is recommended to create your Compute Engine instance in the same zone as your Cloud Bigtable instance for the best possible performance, If it's not possible to create a instance in the same zone, you should create your instance in another zone within the same region. For example, if your Cloud
Bigtable instance is located in us-central1-b, you could create your instance in us-central1-f. This change may result in several milliseconds of additional latency for each Cloud Bigtable request.
It is recommended to avoid creating your Compute Engine instance in a different region from your
Cloud Bigtable instance, which can add hundreds of milliseconds of latency to each Cloud Bigtable request.
Reference: https://cloud.google.com/bigtable/docs/creating-compute-instance
QUESTION NO: 4
You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?
A. Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.
B. In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.
C. In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.
D. Make a call to the Stackdriver API to list all logs, and apply an advanced filter.
Answer: C
QUESTION NO: 5
You need to create a near real-time inventory dashboard that reads the main inventory tables in your BigQuery data warehouse. Historical inventory data is stored as inventory balances by item and location. You have several thousand updates to inventory every hour. You want to maximize performance of the dashboard and ensure that the data is accurate. What should you do?
A. Use the BigQuery streaming the stream changes into a daily inventory movement table. Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.
B. Use the BigQuery bulk loader to batch load inventory changes into a daily inventory movement table.
Calculate balances in a view that joins it to the historical inventory balance table. Update the inventory balance table nightly.
C. Leverage BigQuery UPDATE statements to update the inventory balances as they are changing.
D. Partition the inventory balance table by item to reduce the amount of data scanned with each inventory update.
Answer: C
Cisco 200-201 - 如果你選擇Radiatoripermotori,那麼成功就在不遠處。 Huawei H13-321_V2.0 - 你現在要做的就是參加被普遍認可的、有價值的IT資格考試。 IT行業中很多雄心勃勃的專業人士為了在IT行業中能更上一層樓,離IT頂峰更近一步,都會選擇Google ATLASSIAN ACP-100這個難度較高的認證考試來獲取通認證證書從而獲得行業認可。 SolarWinds SCP-NPM - 不管你參加IT認證的哪個考試,Radiatoripermotori的參考資料都可以給你很大的幫助。 你是可以免費下載Radiatoripermotori為你提供的部分關於Google WGU Data-Management-Foundations認證考試練習題及答案的作為嘗試,那樣你會更有信心地選擇我們的Radiatoripermotori的產品來準備你的Google WGU Data-Management-Foundations 認證考試。
Updated: May 27, 2022
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-05-18
問題數量:379題
Google Professional-Data-Engineer 熱門考題
下載免費試用
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-05-18
問題數量:379題
Google 最新 Professional-Data-Engineer 考證
下載免費試用
考試編碼:Professional-Data-Engineer
考試名稱:Google Certified Professional Data Engineer Exam
更新時間:2025-05-18
問題數量:379題
Google Professional-Data-Engineer 學習指南
下載免費試用